Lockpick_RCM/bdk/storage/sdmmc.c

1501 lines
39 KiB
C

/*
* Copyright (c) 2018 naehrwert
* Copyright (c) 2018-2021 CTCaer
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include <storage/sdmmc.h>
#include <storage/mmc.h>
#include <storage/nx_sd.h>
#include <storage/sd.h>
#include <memory_map.h>
#include <gfx_utils.h>
#include <mem/heap.h>
#include <utils/util.h>
//#define DPRINTF(...) gfx_printf(__VA_ARGS__)
#define DPRINTF(...)
u32 sd_power_cycle_time_start;
static inline u32 unstuff_bits(u32 *resp, u32 start, u32 size)
{
const u32 mask = (size < 32 ? 1 << size : 0) - 1;
const u32 off = 3 - ((start) / 32);
const u32 shft = (start) & 31;
u32 res = resp[off] >> shft;
if (size + shft > 32)
res |= resp[off - 1] << ((32 - shft) % 32);
return res & mask;
}
/*
* Common functions for SD and MMC.
*/
static int _sdmmc_storage_check_card_status(u32 res)
{
//Error mask:
//TODO: R1_SWITCH_ERROR can be skipped for certain card types.
if (res &
(R1_OUT_OF_RANGE | R1_ADDRESS_ERROR | R1_BLOCK_LEN_ERROR |
R1_ERASE_SEQ_ERROR | R1_ERASE_PARAM | R1_WP_VIOLATION |
R1_LOCK_UNLOCK_FAILED | R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND |
R1_CARD_ECC_FAILED | R1_CC_ERROR | R1_ERROR |
R1_CID_CSD_OVERWRITE | R1_WP_ERASE_SKIP | R1_ERASE_RESET |
R1_SWITCH_ERROR))
return 0;
// No errors.
return 1;
}
static int _sdmmc_storage_execute_cmd_type1_ex(sdmmc_storage_t *storage, u32 *resp, u32 cmd, u32 arg, u32 check_busy, u32 expected_state, u32 mask)
{
sdmmc_cmd_t cmdbuf;
sdmmc_init_cmd(&cmdbuf, cmd, arg, SDMMC_RSP_TYPE_1, check_busy);
if (!sdmmc_execute_cmd(storage->sdmmc, &cmdbuf, NULL, NULL))
return 0;
sdmmc_get_rsp(storage->sdmmc, resp, 4, SDMMC_RSP_TYPE_1);
if (mask)
*resp &= ~mask;
if (_sdmmc_storage_check_card_status(*resp))
if (expected_state == R1_SKIP_STATE_CHECK || R1_CURRENT_STATE(*resp) == expected_state)
return 1;
return 0;
}
static int _sdmmc_storage_execute_cmd_type1(sdmmc_storage_t *storage, u32 cmd, u32 arg, u32 check_busy, u32 expected_state)
{
u32 tmp;
return _sdmmc_storage_execute_cmd_type1_ex(storage, &tmp, cmd, arg, check_busy, expected_state, 0);
}
static int _sdmmc_storage_go_idle_state(sdmmc_storage_t *storage)
{
sdmmc_cmd_t cmdbuf;
sdmmc_init_cmd(&cmdbuf, MMC_GO_IDLE_STATE, 0, SDMMC_RSP_TYPE_0, 0);
return sdmmc_execute_cmd(storage->sdmmc, &cmdbuf, NULL, NULL);
}
static int _sdmmc_storage_get_cid(sdmmc_storage_t *storage)
{
sdmmc_cmd_t cmdbuf;
sdmmc_init_cmd(&cmdbuf, MMC_ALL_SEND_CID, 0, SDMMC_RSP_TYPE_2, 0);
if (!sdmmc_execute_cmd(storage->sdmmc, &cmdbuf, NULL, NULL))
return 0;
sdmmc_get_rsp(storage->sdmmc, (u32 *)storage->raw_cid, 16, SDMMC_RSP_TYPE_2);
return 1;
}
static int _sdmmc_storage_select_card(sdmmc_storage_t *storage)
{
return _sdmmc_storage_execute_cmd_type1(storage, MMC_SELECT_CARD, storage->rca << 16, 1, R1_SKIP_STATE_CHECK);
}
static int _sdmmc_storage_get_csd(sdmmc_storage_t *storage)
{
sdmmc_cmd_t cmdbuf;
sdmmc_init_cmd(&cmdbuf, MMC_SEND_CSD, storage->rca << 16, SDMMC_RSP_TYPE_2, 0);
if (!sdmmc_execute_cmd(storage->sdmmc, &cmdbuf, NULL, NULL))
return 0;
sdmmc_get_rsp(storage->sdmmc, (u32 *)storage->raw_csd, 16, SDMMC_RSP_TYPE_2);
return 1;
}
static int _sdmmc_storage_set_blocklen(sdmmc_storage_t *storage, u32 blocklen)
{
return _sdmmc_storage_execute_cmd_type1(storage, MMC_SET_BLOCKLEN, blocklen, 0, R1_STATE_TRAN);
}
static int _sdmmc_storage_get_status(sdmmc_storage_t *storage, u32 *resp, u32 mask)
{
return _sdmmc_storage_execute_cmd_type1_ex(storage, resp, MMC_SEND_STATUS, storage->rca << 16, 0, R1_STATE_TRAN, mask);
}
static int _sdmmc_storage_check_status(sdmmc_storage_t *storage)
{
u32 tmp;
return _sdmmc_storage_get_status(storage, &tmp, 0);
}
int sdmmc_storage_execute_vendor_cmd(sdmmc_storage_t *storage, u32 arg)
{
sdmmc_cmd_t cmdbuf;
sdmmc_init_cmd(&cmdbuf, MMC_VENDOR_62_CMD, arg, SDMMC_RSP_TYPE_1, 1);
if (!sdmmc_execute_cmd(storage->sdmmc, &cmdbuf, 0, 0))
return 0;
u32 resp;
sdmmc_get_rsp(storage->sdmmc, &resp, 4, SDMMC_RSP_TYPE_1);
resp = -1;
u32 timeout = get_tmr_ms() + 1500;
while (resp != (R1_READY_FOR_DATA | R1_STATE(R1_STATE_TRAN)))
{
_sdmmc_storage_get_status(storage, &resp, 0);
if (get_tmr_ms() > timeout)
break;
}
return _sdmmc_storage_check_card_status(resp);
}
int sdmmc_storage_vendor_sandisk_report(sdmmc_storage_t *storage, void *buf)
{
// Request health report.
if (!sdmmc_storage_execute_vendor_cmd(storage, MMC_SANDISK_HEALTH_REPORT))
return 2;
u32 tmp = 0;
sdmmc_cmd_t cmdbuf;
sdmmc_req_t reqbuf;
sdmmc_init_cmd(&cmdbuf, MMC_VENDOR_63_CMD, 0, SDMMC_RSP_TYPE_1, 0); // similar to CMD17 with arg 0x0.
reqbuf.buf = buf;
reqbuf.num_sectors = 1;
reqbuf.blksize = 512;
reqbuf.is_write = 0;
reqbuf.is_multi_block = 0;
reqbuf.is_auto_stop_trn = 0;
u32 blkcnt_out;
if (!sdmmc_execute_cmd(storage->sdmmc, &cmdbuf, &reqbuf, &blkcnt_out))
{
sdmmc_stop_transmission(storage->sdmmc, &tmp);
_sdmmc_storage_get_status(storage, &tmp, 0);
return 0;
}
return 1;
}
static int _sdmmc_storage_readwrite_ex(sdmmc_storage_t *storage, u32 *blkcnt_out, u32 sector, u32 num_sectors, void *buf, u32 is_write)
{
u32 tmp = 0;
sdmmc_cmd_t cmdbuf;
sdmmc_req_t reqbuf;
// If SDSC convert block address to byte address.
if (!storage->has_sector_access)
sector <<= 9;
sdmmc_init_cmd(&cmdbuf, is_write ? MMC_WRITE_MULTIPLE_BLOCK : MMC_READ_MULTIPLE_BLOCK, sector, SDMMC_RSP_TYPE_1, 0);
reqbuf.buf = buf;
reqbuf.num_sectors = num_sectors;
reqbuf.blksize = 512;
reqbuf.is_write = is_write;
reqbuf.is_multi_block = 1;
reqbuf.is_auto_stop_trn = 1;
if (!sdmmc_execute_cmd(storage->sdmmc, &cmdbuf, &reqbuf, blkcnt_out))
{
sdmmc_stop_transmission(storage->sdmmc, &tmp);
_sdmmc_storage_get_status(storage, &tmp, 0);
return 0;
}
return 1;
}
int sdmmc_storage_end(sdmmc_storage_t *storage)
{
if (!_sdmmc_storage_go_idle_state(storage))
return 0;
sdmmc_end(storage->sdmmc);
storage->initialized = 0;
return 1;
}
static int _sdmmc_storage_readwrite(sdmmc_storage_t *storage, u32 sector, u32 num_sectors, void *buf, u32 is_write)
{
u8 *bbuf = (u8 *)buf;
u32 sct_off = sector;
u32 sct_total = num_sectors;
bool first_reinit = true;
// Exit if not initialized.
if (!storage->initialized)
return 0;
while (sct_total)
{
u32 blkcnt = 0;
// Retry 5 times if failed.
u32 retries = 5;
do
{
reinit_try:
if (_sdmmc_storage_readwrite_ex(storage, &blkcnt, sct_off, MIN(sct_total, 0xFFFF), bbuf, is_write))
goto out;
else
retries--;
sd_error_count_increment(SD_ERROR_RW_RETRY);
msleep(50);
} while (retries);
// Disk IO failure! Reinit SD Card to a lower speed.
if (storage->sdmmc->id == SDMMC_1)
{
int res;
sd_error_count_increment(SD_ERROR_RW_FAIL);
if (first_reinit)
res = sd_initialize(true);
else
{
res = sd_init_retry(true);
if (!res)
sd_error_count_increment(SD_ERROR_INIT_FAIL);
}
// Reset values for a retry.
blkcnt = 0;
retries = 3;
first_reinit = false;
// If succesful reinit, restart xfer.
if (res)
{
bbuf = (u8 *)buf;
sct_off = sector;
sct_total = num_sectors;
goto reinit_try;
}
}
// Failed.
return 0;
out:
sct_off += blkcnt;
sct_total -= blkcnt;
bbuf += 512 * blkcnt;
}
return 1;
}
int sdmmc_storage_read(sdmmc_storage_t *storage, u32 sector, u32 num_sectors, void *buf)
{
// Ensure that buffer resides in DRAM and it's DMA aligned.
if (((u32)buf >= DRAM_START) && !((u32)buf % 8))
return _sdmmc_storage_readwrite(storage, sector, num_sectors, buf, 0);
if (num_sectors > (SDMMC_UP_BUF_SZ / 512))
return 0;
u8 *tmp_buf = (u8 *)SDMMC_UPPER_BUFFER;
if (_sdmmc_storage_readwrite(storage, sector, num_sectors, tmp_buf, 0))
{
memcpy(buf, tmp_buf, 512 * num_sectors);
return 1;
}
return 0;
}
int sdmmc_storage_write(sdmmc_storage_t *storage, u32 sector, u32 num_sectors, void *buf)
{
// Ensure that buffer resides in DRAM and it's DMA aligned.
if (((u32)buf >= DRAM_START) && !((u32)buf % 8))
return _sdmmc_storage_readwrite(storage, sector, num_sectors, buf, 1);
if (num_sectors > (SDMMC_UP_BUF_SZ / 512))
return 0;
u8 *tmp_buf = (u8 *)SDMMC_UPPER_BUFFER;
memcpy(tmp_buf, buf, 512 * num_sectors);
return _sdmmc_storage_readwrite(storage, sector, num_sectors, tmp_buf, 1);
}
/*
* MMC specific functions.
*/
static int _mmc_storage_get_op_cond_inner(sdmmc_storage_t *storage, u32 *pout, u32 power)
{
sdmmc_cmd_t cmdbuf;
u32 arg = 0;
switch (power)
{
case SDMMC_POWER_1_8:
arg = MMC_CARD_CCS | MMC_CARD_VDD_18;
break;
case SDMMC_POWER_3_3:
arg = MMC_CARD_CCS | MMC_CARD_VDD_27_34;
break;
default:
return 0;
}
sdmmc_init_cmd(&cmdbuf, MMC_SEND_OP_COND, arg, SDMMC_RSP_TYPE_3, 0);
if (!sdmmc_execute_cmd(storage->sdmmc, &cmdbuf, NULL, NULL))
return 0;
return sdmmc_get_rsp(storage->sdmmc, pout, 4, SDMMC_RSP_TYPE_3);
}
static int _mmc_storage_get_op_cond(sdmmc_storage_t *storage, u32 power)
{
u32 timeout = get_tmr_ms() + 1500;
while (true)
{
u32 cond = 0;
if (!_mmc_storage_get_op_cond_inner(storage, &cond, power))
break;
// Check if power up is done.
if (cond & MMC_CARD_BUSY)
{
// Check if card is high capacity.
if (cond & MMC_CARD_CCS)
storage->has_sector_access = 1;
return 1;
}
if (get_tmr_ms() > timeout)
break;
usleep(1000);
}
return 0;
}
static int _mmc_storage_set_relative_addr(sdmmc_storage_t *storage)
{
return _sdmmc_storage_execute_cmd_type1(storage, MMC_SET_RELATIVE_ADDR, storage->rca << 16, 0, R1_SKIP_STATE_CHECK);
}
static void _mmc_storage_parse_cid(sdmmc_storage_t *storage)
{
u32 *raw_cid = (u32 *)&(storage->raw_cid);
switch (storage->csd.mmca_vsn)
{
case 0: /* MMC v1.0 - v1.2 */
case 1: /* MMC v1.4 */
storage->cid.prod_name[6] = unstuff_bits(raw_cid, 48, 8);
storage->cid.manfid = unstuff_bits(raw_cid, 104, 24);
storage->cid.hwrev = unstuff_bits(raw_cid, 44, 4);
storage->cid.fwrev = unstuff_bits(raw_cid, 40, 4);
storage->cid.serial = unstuff_bits(raw_cid, 16, 24);
break;
case 2: /* MMC v2.0 - v2.2 */
case 3: /* MMC v3.1 - v3.3 */
case 4: /* MMC v4 */
storage->cid.manfid = unstuff_bits(raw_cid, 120, 8);
storage->cid.oemid = unstuff_bits(raw_cid, 104, 8);
storage->cid.prv = unstuff_bits(raw_cid, 48, 8);
storage->cid.serial = unstuff_bits(raw_cid, 16, 32);
break;
default:
break;
}
storage->cid.prod_name[0] = unstuff_bits(raw_cid, 96, 8);
storage->cid.prod_name[1] = unstuff_bits(raw_cid, 88, 8);
storage->cid.prod_name[2] = unstuff_bits(raw_cid, 80, 8);
storage->cid.prod_name[3] = unstuff_bits(raw_cid, 72, 8);
storage->cid.prod_name[4] = unstuff_bits(raw_cid, 64, 8);
storage->cid.prod_name[5] = unstuff_bits(raw_cid, 56, 8);
storage->cid.month = unstuff_bits(raw_cid, 12, 4);
storage->cid.year = unstuff_bits(raw_cid, 8, 4) + 1997;
if (storage->ext_csd.rev >= 5)
{
if (storage->cid.year < 2010)
storage->cid.year += 16;
}
}
static void _mmc_storage_parse_csd(sdmmc_storage_t *storage)
{
u32 *raw_csd = (u32 *)storage->raw_csd;
storage->csd.mmca_vsn = unstuff_bits(raw_csd, 122, 4);
storage->csd.structure = unstuff_bits(raw_csd, 126, 2);
storage->csd.cmdclass = unstuff_bits(raw_csd, 84, 12);
storage->csd.read_blkbits = unstuff_bits(raw_csd, 80, 4);
storage->csd.capacity = (1 + unstuff_bits(raw_csd, 62, 12)) << (unstuff_bits(raw_csd, 47, 3) + 2);
storage->sec_cnt = storage->csd.capacity;
}
static void _mmc_storage_parse_ext_csd(sdmmc_storage_t *storage, u8 *buf)
{
storage->ext_csd.rev = buf[EXT_CSD_REV];
storage->ext_csd.ext_struct = buf[EXT_CSD_STRUCTURE];
storage->ext_csd.card_type = buf[EXT_CSD_CARD_TYPE];
storage->ext_csd.dev_version = *(u16 *)&buf[EXT_CSD_DEVICE_VERSION];
storage->ext_csd.boot_mult = buf[EXT_CSD_BOOT_MULT];
storage->ext_csd.rpmb_mult = buf[EXT_CSD_RPMB_MULT];
//storage->ext_csd.bkops = buf[EXT_CSD_BKOPS_SUPPORT];
//storage->ext_csd.bkops_en = buf[EXT_CSD_BKOPS_EN];
//storage->ext_csd.bkops_status = buf[EXT_CSD_BKOPS_STATUS];
storage->ext_csd.pre_eol_info = buf[EXT_CSD_PRE_EOL_INFO];
storage->ext_csd.dev_life_est_a = buf[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
storage->ext_csd.dev_life_est_b = buf[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
storage->ext_csd.cache_size =
buf[EXT_CSD_CACHE_SIZE] |
(buf[EXT_CSD_CACHE_SIZE + 1] << 8) |
(buf[EXT_CSD_CACHE_SIZE + 2] << 16) |
(buf[EXT_CSD_CACHE_SIZE + 3] << 24);
storage->ext_csd.max_enh_mult =
(buf[EXT_CSD_MAX_ENH_SIZE_MULT] |
(buf[EXT_CSD_MAX_ENH_SIZE_MULT + 1] << 8) |
(buf[EXT_CSD_MAX_ENH_SIZE_MULT + 2] << 16)) *
buf[EXT_CSD_HC_WP_GRP_SIZE] * buf[EXT_CSD_HC_ERASE_GRP_SIZE];
storage->sec_cnt = *(u32 *)&buf[EXT_CSD_SEC_CNT];
}
static int _mmc_storage_get_ext_csd(sdmmc_storage_t *storage, void *buf)
{
sdmmc_cmd_t cmdbuf;
sdmmc_init_cmd(&cmdbuf, MMC_SEND_EXT_CSD, 0, SDMMC_RSP_TYPE_1, 0);
sdmmc_req_t reqbuf;
reqbuf.buf = buf;
reqbuf.blksize = 512;
reqbuf.num_sectors = 1;
reqbuf.is_write = 0;
reqbuf.is_multi_block = 0;
reqbuf.is_auto_stop_trn = 0;
if (!sdmmc_execute_cmd(storage->sdmmc, &cmdbuf, &reqbuf, NULL))
return 0;
u32 tmp = 0;
sdmmc_get_rsp(storage->sdmmc, &tmp, 4, SDMMC_RSP_TYPE_1);
_mmc_storage_parse_ext_csd(storage, buf);
return _sdmmc_storage_check_card_status(tmp);
}
static int _mmc_storage_switch(sdmmc_storage_t *storage, u32 arg)
{
return _sdmmc_storage_execute_cmd_type1(storage, MMC_SWITCH, arg, 1, R1_SKIP_STATE_CHECK);
}
static int _mmc_storage_switch_buswidth(sdmmc_storage_t *storage, u32 bus_width)
{
if (bus_width == SDMMC_BUS_WIDTH_1)
return 1;
u32 arg = 0;
switch (bus_width)
{
case SDMMC_BUS_WIDTH_4:
arg = SDMMC_SWITCH(MMC_SWITCH_MODE_WRITE_BYTE, EXT_CSD_BUS_WIDTH, EXT_CSD_BUS_WIDTH_4);
break;
case SDMMC_BUS_WIDTH_8:
arg = SDMMC_SWITCH(MMC_SWITCH_MODE_WRITE_BYTE, EXT_CSD_BUS_WIDTH, EXT_CSD_BUS_WIDTH_8);
break;
}
if (_mmc_storage_switch(storage, arg))
if (_sdmmc_storage_check_status(storage))
{
sdmmc_set_bus_width(storage->sdmmc, bus_width);
return 1;
}
return 0;
}
static int _mmc_storage_enable_HS(sdmmc_storage_t *storage, int check)
{
if (!_mmc_storage_switch(storage, SDMMC_SWITCH(MMC_SWITCH_MODE_WRITE_BYTE, EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS)))
return 0;
if (check && !_sdmmc_storage_check_status(storage))
return 0;
if (!sdmmc_setup_clock(storage->sdmmc, SDHCI_TIMING_MMC_HS52))
return 0;
DPRINTF("[MMC] switched to HS\n");
storage->csd.busspeed = 52;
if (check || _sdmmc_storage_check_status(storage))
return 1;
return 0;
}
static int _mmc_storage_enable_HS200(sdmmc_storage_t *storage)
{
if (!_mmc_storage_switch(storage, SDMMC_SWITCH(MMC_SWITCH_MODE_WRITE_BYTE, EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS200)))
return 0;
if (!sdmmc_setup_clock(storage->sdmmc, SDHCI_TIMING_MMC_HS200))
return 0;
if (!sdmmc_tuning_execute(storage->sdmmc, SDHCI_TIMING_MMC_HS200, MMC_SEND_TUNING_BLOCK_HS200))
return 0;
DPRINTF("[MMC] switched to HS200\n");
storage->csd.busspeed = 200;
return _sdmmc_storage_check_status(storage);
}
static int _mmc_storage_enable_HS400(sdmmc_storage_t *storage)
{
if (!_mmc_storage_enable_HS200(storage))
return 0;
sdmmc_save_tap_value(storage->sdmmc);
if (!_mmc_storage_enable_HS(storage, 0))
return 0;
if (!_mmc_storage_switch(storage, SDMMC_SWITCH(MMC_SWITCH_MODE_WRITE_BYTE, EXT_CSD_BUS_WIDTH, EXT_CSD_DDR_BUS_WIDTH_8)))
return 0;
if (!_mmc_storage_switch(storage, SDMMC_SWITCH(MMC_SWITCH_MODE_WRITE_BYTE, EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS400)))
return 0;
if (!sdmmc_setup_clock(storage->sdmmc, SDHCI_TIMING_MMC_HS400))
return 0;
DPRINTF("[MMC] switched to HS400\n");
storage->csd.busspeed = 400;
return _sdmmc_storage_check_status(storage);
}
static int _mmc_storage_enable_highspeed(sdmmc_storage_t *storage, u32 card_type, u32 type)
{
if (sdmmc_get_io_power(storage->sdmmc) != SDMMC_POWER_1_8)
goto out;
if (sdmmc_get_bus_width(storage->sdmmc) == SDMMC_BUS_WIDTH_8 &&
card_type & EXT_CSD_CARD_TYPE_HS400_1_8V && type == SDHCI_TIMING_MMC_HS400)
return _mmc_storage_enable_HS400(storage);
if (sdmmc_get_bus_width(storage->sdmmc) == SDMMC_BUS_WIDTH_8 ||
(sdmmc_get_bus_width(storage->sdmmc) == SDMMC_BUS_WIDTH_4
&& card_type & EXT_CSD_CARD_TYPE_HS200_1_8V
&& (type == SDHCI_TIMING_MMC_HS400 || type == SDHCI_TIMING_MMC_HS200)))
return _mmc_storage_enable_HS200(storage);
out:
if (card_type & EXT_CSD_CARD_TYPE_HS_52)
return _mmc_storage_enable_HS(storage, 1);
return 1;
}
/*
static int _mmc_storage_enable_bkops(sdmmc_storage_t *storage)
{
if (!_mmc_storage_switch(storage, SDMMC_SWITCH(MMC_SWITCH_MODE_SET_BITS, EXT_CSD_BKOPS_EN, EXT_CSD_AUTO_BKOPS_MASK)))
return 0;
return _sdmmc_storage_check_status(storage);
}
*/
int sdmmc_storage_init_mmc(sdmmc_storage_t *storage, sdmmc_t *sdmmc, u32 bus_width, u32 type)
{
memset(storage, 0, sizeof(sdmmc_storage_t));
storage->sdmmc = sdmmc;
storage->rca = 2; // Set default device address. This could be a config item.
if (!sdmmc_init(sdmmc, SDMMC_4, SDMMC_POWER_1_8, SDMMC_BUS_WIDTH_1, SDHCI_TIMING_MMC_ID, SDMMC_POWER_SAVE_DISABLE))
return 0;
DPRINTF("[MMC] after init\n");
usleep(1000 + (74000 + sdmmc->divisor - 1) / sdmmc->divisor);
if (!_sdmmc_storage_go_idle_state(storage))
return 0;
DPRINTF("[MMC] went to idle state\n");
if (!_mmc_storage_get_op_cond(storage, SDMMC_POWER_1_8))
return 0;
DPRINTF("[MMC] got op cond\n");
if (!_sdmmc_storage_get_cid(storage))
return 0;
DPRINTF("[MMC] got cid\n");
if (!_mmc_storage_set_relative_addr(storage))
return 0;
DPRINTF("[MMC] set relative addr\n");
if (!_sdmmc_storage_get_csd(storage))
return 0;
DPRINTF("[MMC] got csd\n");
_mmc_storage_parse_csd(storage);
if (!sdmmc_setup_clock(storage->sdmmc, SDHCI_TIMING_MMC_LS26))
return 0;
DPRINTF("[MMC] after setup clock\n");
if (!_sdmmc_storage_select_card(storage))
return 0;
DPRINTF("[MMC] card selected\n");
if (!_sdmmc_storage_set_blocklen(storage, 512))
return 0;
DPRINTF("[MMC] set blocklen to 512\n");
// Check system specification version, only version 4.0 and later support below features.
if (storage->csd.mmca_vsn < CSD_SPEC_VER_4)
return 1;
if (!_mmc_storage_switch_buswidth(storage, bus_width))
return 0;
DPRINTF("[MMC] switched buswidth\n");
if (!_mmc_storage_get_ext_csd(storage, (u8 *)SDMMC_UPPER_BUFFER))
return 0;
DPRINTF("[MMC] got ext_csd\n");
_mmc_storage_parse_cid(storage); // This needs to be after csd and ext_csd.
//gfx_hexdump(0, ext_csd, 512);
/*
if (storage->ext_csd.bkops & 0x1 && !(storage->ext_csd.bkops_en & EXT_CSD_AUTO_BKOPS_MASK))
{
_mmc_storage_enable_bkops(storage);
DPRINTF("[MMC] BKOPS enabled\n");
}
*/
if (!_mmc_storage_enable_highspeed(storage, storage->ext_csd.card_type, type))
return 0;
DPRINTF("[MMC] successfully switched to HS mode\n");
sdmmc_card_clock_powersave(storage->sdmmc, SDMMC_POWER_SAVE_ENABLE);
storage->initialized = 1;
return 1;
}
int sdmmc_storage_set_mmc_partition(sdmmc_storage_t *storage, u32 partition)
{
if (!_mmc_storage_switch(storage, SDMMC_SWITCH(MMC_SWITCH_MODE_WRITE_BYTE, EXT_CSD_PART_CONFIG, partition)))
return 0;
if (!_sdmmc_storage_check_status(storage))
return 0;
storage->partition = partition;
return 1;
}
/*
* SD specific functions.
*/
static int _sd_storage_execute_app_cmd(sdmmc_storage_t *storage, u32 expected_state, u32 mask, sdmmc_cmd_t *cmdbuf, sdmmc_req_t *req, u32 *blkcnt_out)
{
u32 tmp;
if (!_sdmmc_storage_execute_cmd_type1_ex(storage, &tmp, MMC_APP_CMD, storage->rca << 16, 0, expected_state, mask))
return 0;
return sdmmc_execute_cmd(storage->sdmmc, cmdbuf, req, blkcnt_out);
}
static int _sd_storage_execute_app_cmd_type1(sdmmc_storage_t *storage, u32 *resp, u32 cmd, u32 arg, u32 check_busy, u32 expected_state)
{
if (!_sdmmc_storage_execute_cmd_type1(storage, MMC_APP_CMD, storage->rca << 16, 0, R1_STATE_TRAN))
return 0;
return _sdmmc_storage_execute_cmd_type1_ex(storage, resp, cmd, arg, check_busy, expected_state, 0);
}
static int _sd_storage_send_if_cond(sdmmc_storage_t *storage, bool *is_sdsc)
{
sdmmc_cmd_t cmdbuf;
u16 vhd_pattern = SD_VHD_27_36 | 0xAA;
sdmmc_init_cmd(&cmdbuf, SD_SEND_IF_COND, vhd_pattern, SDMMC_RSP_TYPE_5, 0);
if (!sdmmc_execute_cmd(storage->sdmmc, &cmdbuf, NULL, NULL))
{
*is_sdsc = 1; // The SD Card is version 1.X
return 1;
}
// For Card version >= 2.0, parse results.
u32 resp = 0;
sdmmc_get_rsp(storage->sdmmc, &resp, 4, SDMMC_RSP_TYPE_5);
// Check if VHD was accepted and pattern was properly returned.
if ((resp & 0xFFF) == vhd_pattern)
return 1;
return 0;
}
static int _sd_storage_get_op_cond_once(sdmmc_storage_t *storage, u32 *cond, bool is_sdsc, int bus_uhs_support)
{
sdmmc_cmd_t cmdbuf;
// Support for Current > 150mA
u32 arg = !is_sdsc ? SD_OCR_XPC : 0;
// Support for handling block-addressed SDHC cards
arg |= !is_sdsc ? SD_OCR_CCS : 0;
// Support for 1.8V
arg |= (bus_uhs_support && !is_sdsc) ? SD_OCR_S18R : 0;
// This is needed for most cards. Do not set bit7 even if 1.8V is supported.
arg |= SD_OCR_VDD_32_33;
sdmmc_init_cmd(&cmdbuf, SD_APP_OP_COND, arg, SDMMC_RSP_TYPE_3, 0);
if (!_sd_storage_execute_app_cmd(storage, R1_SKIP_STATE_CHECK, is_sdsc ? R1_ILLEGAL_COMMAND : 0, &cmdbuf, NULL, NULL))
return 0;
return sdmmc_get_rsp(storage->sdmmc, cond, 4, SDMMC_RSP_TYPE_3);
}
static int _sd_storage_get_op_cond(sdmmc_storage_t *storage, bool is_sdsc, int bus_uhs_support)
{
u32 timeout = get_tmr_ms() + 1500;
while (true)
{
u32 cond = 0;
if (!_sd_storage_get_op_cond_once(storage, &cond, is_sdsc, bus_uhs_support))
break;
// Check if power up is done.
if (cond & SD_OCR_BUSY)
{
DPRINTF("[SD] op cond: %08X, lv: %d\n", cond, bus_uhs_support);
// Check if card is high capacity.
if (cond & SD_OCR_CCS)
storage->has_sector_access = 1;
// Check if card supports 1.8V signaling.
if (cond & SD_ROCR_S18A && bus_uhs_support)
{
// Switch to 1.8V signaling.
if (_sdmmc_storage_execute_cmd_type1(storage, SD_SWITCH_VOLTAGE, 0, 0, R1_STATE_READY))
{
if (!sdmmc_enable_low_voltage(storage->sdmmc))
return 0;
storage->is_low_voltage = 1;
DPRINTF("-> switched to low voltage\n");
}
}
else
{
DPRINTF("[SD] no low voltage support\n");
}
return 1;
}
if (get_tmr_ms() > timeout)
break;
msleep(10); // Needs to be at least 10ms for some SD Cards
}
return 0;
}
static int _sd_storage_get_rca(sdmmc_storage_t *storage)
{
sdmmc_cmd_t cmdbuf;
sdmmc_init_cmd(&cmdbuf, SD_SEND_RELATIVE_ADDR, 0, SDMMC_RSP_TYPE_4, 0);
u32 timeout = get_tmr_ms() + 1500;
while (true)
{
if (!sdmmc_execute_cmd(storage->sdmmc, &cmdbuf, NULL, NULL))
break;
u32 resp = 0;
if (!sdmmc_get_rsp(storage->sdmmc, &resp, 4, SDMMC_RSP_TYPE_4))
break;
if (resp >> 16)
{
storage->rca = resp >> 16;
return 1;
}
if (get_tmr_ms() > timeout)
break;
usleep(1000);
}
return 0;
}
static void _sd_storage_parse_scr(sdmmc_storage_t *storage)
{
// unstuff_bits can parse only 4 u32
u32 resp[4];
resp[3] = *(u32 *)&storage->raw_scr[4];
resp[2] = *(u32 *)&storage->raw_scr[0];
storage->scr.sda_vsn = unstuff_bits(resp, 56, 4);
storage->scr.bus_widths = unstuff_bits(resp, 48, 4);
/* If v2.0 is supported, check if Physical Layer Spec v3.0 is supported */
if (storage->scr.sda_vsn == SCR_SPEC_VER_2)
storage->scr.sda_spec3 = unstuff_bits(resp, 47, 1);
if (storage->scr.sda_spec3)
storage->scr.cmds = unstuff_bits(resp, 32, 2);
}
int _sd_storage_get_scr(sdmmc_storage_t *storage, u8 *buf)
{
sdmmc_cmd_t cmdbuf;
sdmmc_init_cmd(&cmdbuf, SD_APP_SEND_SCR, 0, SDMMC_RSP_TYPE_1, 0);
sdmmc_req_t reqbuf;
reqbuf.buf = buf;
reqbuf.blksize = 8;
reqbuf.num_sectors = 1;
reqbuf.is_write = 0;
reqbuf.is_multi_block = 0;
reqbuf.is_auto_stop_trn = 0;
if (!_sd_storage_execute_app_cmd(storage, R1_STATE_TRAN, 0, &cmdbuf, &reqbuf, NULL))
return 0;
u32 tmp = 0;
sdmmc_get_rsp(storage->sdmmc, &tmp, 4, SDMMC_RSP_TYPE_1);
//Prepare buffer for unstuff_bits
for (int i = 0; i < 8; i+=4)
{
storage->raw_scr[i + 3] = buf[i];
storage->raw_scr[i + 2] = buf[i + 1];
storage->raw_scr[i + 1] = buf[i + 2];
storage->raw_scr[i] = buf[i + 3];
}
_sd_storage_parse_scr(storage);
//gfx_hexdump(0, storage->raw_scr, 8);
return _sdmmc_storage_check_card_status(tmp);
}
int _sd_storage_switch_get(sdmmc_storage_t *storage, void *buf)
{
sdmmc_cmd_t cmdbuf;
sdmmc_init_cmd(&cmdbuf, SD_SWITCH, 0xFFFFFF, SDMMC_RSP_TYPE_1, 0);
sdmmc_req_t reqbuf;
reqbuf.buf = buf;
reqbuf.blksize = 64;
reqbuf.num_sectors = 1;
reqbuf.is_write = 0;
reqbuf.is_multi_block = 0;
reqbuf.is_auto_stop_trn = 0;
if (!sdmmc_execute_cmd(storage->sdmmc, &cmdbuf, &reqbuf, NULL))
return 0;
u32 tmp = 0;
sdmmc_get_rsp(storage->sdmmc, &tmp, 4, SDMMC_RSP_TYPE_1);
return _sdmmc_storage_check_card_status(tmp);
}
int _sd_storage_switch(sdmmc_storage_t *storage, void *buf, int mode, int group, u32 arg)
{
sdmmc_cmd_t cmdbuf;
u32 switchcmd = mode << 31 | 0x00FFFFFF;
switchcmd &= ~(0xF << (group * 4));
switchcmd |= arg << (group * 4);
sdmmc_init_cmd(&cmdbuf, SD_SWITCH, switchcmd, SDMMC_RSP_TYPE_1, 0);
sdmmc_req_t reqbuf;
reqbuf.buf = buf;
reqbuf.blksize = 64;
reqbuf.num_sectors = 1;
reqbuf.is_write = 0;
reqbuf.is_multi_block = 0;
reqbuf.is_auto_stop_trn = 0;
if (!sdmmc_execute_cmd(storage->sdmmc, &cmdbuf, &reqbuf, NULL))
return 0;
u32 tmp = 0;
sdmmc_get_rsp(storage->sdmmc, &tmp, 4, SDMMC_RSP_TYPE_1);
return _sdmmc_storage_check_card_status(tmp);
}
void _sd_storage_set_current_limit(sdmmc_storage_t *storage, u16 current_limit, u8 *buf)
{
u32 pwr = SD_SET_CURRENT_LIMIT_200;
if (current_limit & SD_MAX_CURRENT_800)
pwr = SD_SET_CURRENT_LIMIT_800;
else if (current_limit & SD_MAX_CURRENT_600)
pwr = SD_SET_CURRENT_LIMIT_600;
else if (current_limit & SD_MAX_CURRENT_400)
pwr = SD_SET_CURRENT_LIMIT_400;
_sd_storage_switch(storage, buf, SD_SWITCH_SET, 3, pwr);
if (((buf[15] >> 4) & 0x0F) == pwr)
{
switch (pwr)
{
case SD_SET_CURRENT_LIMIT_800:
DPRINTF("[SD] power limit raised to 800mA\n");
break;
case SD_SET_CURRENT_LIMIT_600:
DPRINTF("[SD] power limit raised to 600mA\n");
break;
case SD_SET_CURRENT_LIMIT_400:
DPRINTF("[SD] power limit raised to 400mA\n");
break;
default:
case SD_SET_CURRENT_LIMIT_200:
DPRINTF("[SD] power limit defaulted to 200mA\n");
break;
}
}
}
int _sd_storage_enable_highspeed(sdmmc_storage_t *storage, u32 hs_type, u8 *buf)
{
if (!_sd_storage_switch(storage, buf, SD_SWITCH_CHECK, 0, hs_type))
return 0;
DPRINTF("[SD] supports (U)HS mode: %d\n", buf[16] & 0xF);
u32 type_out = buf[16] & 0xF;
if (type_out != hs_type)
return 0;
DPRINTF("[SD] supports selected (U)HS mode\n");
u16 total_pwr_consumption = ((u16)buf[0] << 8) | buf[1];
DPRINTF("[SD] total max current: %d\n", total_pwr_consumption);
if (total_pwr_consumption <= 800)
{
if (!_sd_storage_switch(storage, buf, SD_SWITCH_SET, 0, hs_type))
return 0;
if (type_out != (buf[16] & 0xF))
return 0;
return 1;
}
DPRINTF("[SD] card max current over limit\n");
return 0;
}
int _sd_storage_enable_uhs_low_volt(sdmmc_storage_t *storage, u32 type, u8 *buf)
{
if (sdmmc_get_bus_width(storage->sdmmc) != SDMMC_BUS_WIDTH_4)
return 0;
if (!_sd_storage_switch_get(storage, buf))
return 0;
//gfx_hexdump(0, (u8 *)buf, 64);
u8 access_mode = buf[13];
u16 current_limit = buf[7] | buf[6] << 8;
DPRINTF("[SD] access: %02X, current: %02X\n", access_mode, current_limit);
// Try to raise the current limit to let the card perform better.
_sd_storage_set_current_limit(storage, current_limit, buf);
u32 hs_type = 0;
switch (type)
{
case SDHCI_TIMING_UHS_SDR104:
case SDHCI_TIMING_UHS_SDR82:
// Fall through if not supported.
if (access_mode & SD_MODE_UHS_SDR104)
{
hs_type = UHS_SDR104_BUS_SPEED;
DPRINTF("[SD] bus speed set to SDR104\n");
switch (type)
{
case SDHCI_TIMING_UHS_SDR104:
storage->csd.busspeed = 104;
break;
case SDHCI_TIMING_UHS_SDR82:
storage->csd.busspeed = 82;
break;
}
break;
}
case SDHCI_TIMING_UHS_SDR50:
if (access_mode & SD_MODE_UHS_SDR50)
{
type = SDHCI_TIMING_UHS_SDR50;
hs_type = UHS_SDR50_BUS_SPEED;
DPRINTF("[SD] bus speed set to SDR50\n");
storage->csd.busspeed = 50;
break;
}
case SDHCI_TIMING_UHS_SDR25:
if (access_mode & SD_MODE_UHS_SDR25)
{
type = SDHCI_TIMING_UHS_SDR25;
hs_type = UHS_SDR25_BUS_SPEED;
DPRINTF("[SD] bus speed set to SDR25\n");
storage->csd.busspeed = 25;
break;
}
case SDHCI_TIMING_UHS_SDR12:
if (!(access_mode & SD_MODE_UHS_SDR12))
return 0;
type = SDHCI_TIMING_UHS_SDR12;
hs_type = UHS_SDR12_BUS_SPEED;
DPRINTF("[SD] bus speed set to SDR12\n");
storage->csd.busspeed = 12;
break;
default:
return 0;
break;
}
if (!_sd_storage_enable_highspeed(storage, hs_type, buf))
return 0;
DPRINTF("[SD] card accepted UHS\n");
if (!sdmmc_setup_clock(storage->sdmmc, type))
return 0;
DPRINTF("[SD] after setup clock\n");
if (!sdmmc_tuning_execute(storage->sdmmc, type, MMC_SEND_TUNING_BLOCK))
return 0;
DPRINTF("[SD] after tuning\n");
return _sdmmc_storage_check_status(storage);
}
int _sd_storage_enable_hs_high_volt(sdmmc_storage_t *storage, u8 *buf)
{
if (!_sd_storage_switch_get(storage, buf))
return 0;
//gfx_hexdump(0, (u8 *)buf, 64);
u8 access_mode = buf[13];
u16 current_limit = buf[7] | buf[6] << 8;
// Try to raise the current limit to let the card perform better.
_sd_storage_set_current_limit(storage, current_limit, buf);
if (!(access_mode & SD_MODE_HIGH_SPEED))
return 1;
if (!_sd_storage_enable_highspeed(storage, HIGH_SPEED_BUS_SPEED, buf))
return 0;
if (!_sdmmc_storage_check_status(storage))
return 0;
return sdmmc_setup_clock(storage->sdmmc, SDHCI_TIMING_SD_HS25);
}
u32 sd_storage_get_ssr_au(sdmmc_storage_t *storage)
{
u32 au_size = storage->ssr.uhs_au_size;
if (!au_size)
au_size = storage->ssr.au_size;
if (au_size <= 10)
{
u32 shift = au_size;
au_size = shift ? 8 : 0;
au_size <<= shift;
}
else
{
switch (au_size)
{
case 11:
au_size = 12288;
break;
case 12:
au_size = 16384;
break;
case 13:
au_size = 24576;
break;
case 14:
au_size = 32768;
break;
case 15:
au_size = 65536;
break;
}
}
return au_size;
}
static void _sd_storage_parse_ssr(sdmmc_storage_t *storage)
{
// unstuff_bits supports only 4 u32 so break into 2 x u32x4 groups.
u32 raw_ssr1[4];
u32 raw_ssr2[4];
memcpy(raw_ssr1, &storage->raw_ssr[0], 16);
memcpy(raw_ssr2, &storage->raw_ssr[16], 16);
storage->ssr.bus_width = (unstuff_bits(raw_ssr1, 510 - 384, 2) & SD_BUS_WIDTH_4) ? 4 : 1;
storage->ssr.protected_size = unstuff_bits(raw_ssr1, 448 - 384, 32);
u32 speed_class = unstuff_bits(raw_ssr1, 440 - 384, 8);
switch(speed_class)
{
case 0:
case 1:
case 2:
case 3:
storage->ssr.speed_class = speed_class << 1;
break;
case 4:
storage->ssr.speed_class = 10;
break;
default:
storage->ssr.speed_class = speed_class;
break;
}
storage->ssr.uhs_grade = unstuff_bits(raw_ssr1, 396 - 384, 4);
storage->ssr.video_class = unstuff_bits(raw_ssr1, 384 - 384, 8);
storage->ssr.app_class = unstuff_bits(raw_ssr2, 336 - 256, 4);
storage->ssr.au_size = unstuff_bits(raw_ssr1, 428 - 384, 4);
storage->ssr.uhs_au_size = unstuff_bits(raw_ssr1, 392 - 384, 4);
}
int sd_storage_get_ssr(sdmmc_storage_t *storage, u8 *buf)
{
sdmmc_cmd_t cmdbuf;
sdmmc_init_cmd(&cmdbuf, SD_APP_SD_STATUS, 0, SDMMC_RSP_TYPE_1, 0);
sdmmc_req_t reqbuf;
reqbuf.buf = buf;
reqbuf.blksize = 64;
reqbuf.num_sectors = 1;
reqbuf.is_write = 0;
reqbuf.is_multi_block = 0;
reqbuf.is_auto_stop_trn = 0;
if (!(storage->csd.cmdclass & CCC_APP_SPEC))
{
DPRINTF("[SD] ssr: Not supported\n");
return 0;
}
if (!_sd_storage_execute_app_cmd(storage, R1_STATE_TRAN, 0, &cmdbuf, &reqbuf, NULL))
return 0;
u32 tmp = 0;
sdmmc_get_rsp(storage->sdmmc, &tmp, 4, SDMMC_RSP_TYPE_1);
// Convert buffer to LE.
for (int i = 0; i < 64; i += 4)
{
storage->raw_ssr[i + 3] = buf[i];
storage->raw_ssr[i + 2] = buf[i + 1];
storage->raw_ssr[i + 1] = buf[i + 2];
storage->raw_ssr[i] = buf[i + 3];
}
_sd_storage_parse_ssr(storage);
//gfx_hexdump(0, storage->raw_ssr, 64);
return _sdmmc_storage_check_card_status(tmp);
}
static void _sd_storage_parse_cid(sdmmc_storage_t *storage)
{
u32 *raw_cid = (u32 *)&(storage->raw_cid);
storage->cid.manfid = unstuff_bits(raw_cid, 120, 8);
storage->cid.oemid = unstuff_bits(raw_cid, 104, 16);
storage->cid.prod_name[0] = unstuff_bits(raw_cid, 96, 8);
storage->cid.prod_name[1] = unstuff_bits(raw_cid, 88, 8);
storage->cid.prod_name[2] = unstuff_bits(raw_cid, 80, 8);
storage->cid.prod_name[3] = unstuff_bits(raw_cid, 72, 8);
storage->cid.prod_name[4] = unstuff_bits(raw_cid, 64, 8);
storage->cid.hwrev = unstuff_bits(raw_cid, 60, 4);
storage->cid.fwrev = unstuff_bits(raw_cid, 56, 4);
storage->cid.serial = unstuff_bits(raw_cid, 24, 32);
storage->cid.year = unstuff_bits(raw_cid, 12, 8) + 2000;
storage->cid.month = unstuff_bits(raw_cid, 8, 4);
}
static void _sd_storage_parse_csd(sdmmc_storage_t *storage)
{
u32 *raw_csd = (u32 *)&(storage->raw_csd);
storage->csd.structure = unstuff_bits(raw_csd, 126, 2);
storage->csd.cmdclass = unstuff_bits(raw_csd, 84, 12);
storage->csd.read_blkbits = unstuff_bits(raw_csd, 80, 4);
storage->csd.write_protect = unstuff_bits(raw_csd, 12, 2);
switch(storage->csd.structure)
{
case 0:
storage->csd.capacity = (1 + unstuff_bits(raw_csd, 62, 12)) << (unstuff_bits(raw_csd, 47, 3) + 2);
storage->csd.capacity <<= unstuff_bits(raw_csd, 80, 4) - 9; // Convert native block size to LBA 512B.
break;
case 1:
storage->csd.c_size = (1 + unstuff_bits(raw_csd, 48, 22));
storage->csd.capacity = storage->csd.c_size << 10;
storage->csd.read_blkbits = 9;
break;
default:
DPRINTF("[SD] unknown CSD structure %d\n", storage->csd.structure);
break;
}
storage->sec_cnt = storage->csd.capacity;
}
static bool _sdmmc_storage_get_bus_uhs_support(u32 bus_width, u32 type)
{
switch (type)
{
case SDHCI_TIMING_UHS_SDR12:
case SDHCI_TIMING_UHS_SDR25:
case SDHCI_TIMING_UHS_SDR50:
case SDHCI_TIMING_UHS_SDR104:
case SDHCI_TIMING_UHS_SDR82:
case SDHCI_TIMING_UHS_DDR50:
if (bus_width == SDMMC_BUS_WIDTH_4)
return true;
default:
return false;
}
}
void sdmmc_storage_init_wait_sd()
{
// T210/T210B01 WAR: Wait exactly 239ms for IO and Controller power to discharge.
u32 sd_poweroff_time = (u32)get_tmr_ms() - sd_power_cycle_time_start;
if (sd_poweroff_time < 239)
msleep(239 - sd_poweroff_time);
}
int sdmmc_storage_init_sd(sdmmc_storage_t *storage, sdmmc_t *sdmmc, u32 bus_width, u32 type)
{
u32 tmp = 0;
int is_sdsc = 0;
u8 *buf = (u8 *)SDMMC_UPPER_BUFFER;
bool bus_uhs_support = _sdmmc_storage_get_bus_uhs_support(bus_width, type);
DPRINTF("[SD] init: bus: %d, type: %d\n", bus_width, type);
// Some cards (SanDisk U1), do not like a fast power cycle. Wait min 100ms.
sdmmc_storage_init_wait_sd();
memset(storage, 0, sizeof(sdmmc_storage_t));
storage->sdmmc = sdmmc;
if (!sdmmc_init(sdmmc, SDMMC_1, SDMMC_POWER_3_3, SDMMC_BUS_WIDTH_1, SDHCI_TIMING_SD_ID, SDMMC_POWER_SAVE_DISABLE))
return 0;
DPRINTF("[SD] after init\n");
usleep(1000 + (74000 + sdmmc->divisor - 1) / sdmmc->divisor);
if (!_sdmmc_storage_go_idle_state(storage))
return 0;
DPRINTF("[SD] went to idle state\n");
if (!_sd_storage_send_if_cond(storage, &is_sdsc))
return 0;
DPRINTF("[SD] after send if cond\n");
if (!_sd_storage_get_op_cond(storage, is_sdsc, bus_uhs_support))
return 0;
DPRINTF("[SD] got op cond\n");
if (!_sdmmc_storage_get_cid(storage))
return 0;
DPRINTF("[SD] got cid\n");
_sd_storage_parse_cid(storage);
if (!_sd_storage_get_rca(storage))
return 0;
DPRINTF("[SD] got rca (= %04X)\n", storage->rca);
if (!_sdmmc_storage_get_csd(storage))
return 0;
DPRINTF("[SD] got csd\n");
_sd_storage_parse_csd(storage);
if (!storage->is_low_voltage)
{
if (!sdmmc_setup_clock(storage->sdmmc, SDHCI_TIMING_SD_DS12))
return 0;
DPRINTF("[SD] after setup default clock\n");
}
if (!_sdmmc_storage_select_card(storage))
return 0;
DPRINTF("[SD] card selected\n");
if (!_sdmmc_storage_set_blocklen(storage, 512))
return 0;
DPRINTF("[SD] set blocklen to 512\n");
// Disconnect Card Detect resistor from DAT3.
if (!_sd_storage_execute_app_cmd_type1(storage, &tmp, SD_APP_SET_CLR_CARD_DETECT, 0, 0, R1_STATE_TRAN))
return 0;
DPRINTF("[SD] cleared card detect\n");
if (!_sd_storage_get_scr(storage, buf))
return 0;
DPRINTF("[SD] got scr\n");
// If card supports a wider bus and if it's not SD Version 1.0 switch bus width.
if (bus_width == SDMMC_BUS_WIDTH_4 && (storage->scr.bus_widths & BIT(SD_BUS_WIDTH_4)) && storage->scr.sda_vsn)
{
if (!_sd_storage_execute_app_cmd_type1(storage, &tmp, SD_APP_SET_BUS_WIDTH, SD_BUS_WIDTH_4, 0, R1_STATE_TRAN))
return 0;
sdmmc_set_bus_width(storage->sdmmc, SDMMC_BUS_WIDTH_4);
DPRINTF("[SD] switched to wide bus width\n");
}
else
{
bus_width = SDMMC_BUS_WIDTH_1;
DPRINTF("[SD] SD does not support wide bus width\n");
}
if (storage->is_low_voltage)
{
if (!_sd_storage_enable_uhs_low_volt(storage, type, buf))
return 0;
DPRINTF("[SD] enabled UHS\n");
}
else if (type != SDHCI_TIMING_SD_DS12 && storage->scr.sda_vsn) // Not default speed and not SD Version 1.0.
{
if (!_sd_storage_enable_hs_high_volt(storage, buf))
return 0;
DPRINTF("[SD] enabled HS\n");
switch (bus_width)
{
case SDMMC_BUS_WIDTH_4:
storage->csd.busspeed = 25;
break;
case SDMMC_BUS_WIDTH_1:
storage->csd.busspeed = 6;
break;
}
}
// Parse additional card info from sd status.
if (sd_storage_get_ssr(storage, buf))
{
DPRINTF("[SD] got sd status\n");
}
sdmmc_card_clock_powersave(sdmmc, SDMMC_POWER_SAVE_ENABLE);
storage->initialized = 1;
return 1;
}
/*
* Gamecard specific functions.
*/
int _gc_storage_custom_cmd(sdmmc_storage_t *storage, void *buf)
{
u32 resp;
sdmmc_cmd_t cmdbuf;
sdmmc_init_cmd(&cmdbuf, MMC_VENDOR_60_CMD, 0, SDMMC_RSP_TYPE_1, 1);
sdmmc_req_t reqbuf;
reqbuf.buf = buf;
reqbuf.blksize = 64;
reqbuf.num_sectors = 1;
reqbuf.is_write = 1;
reqbuf.is_multi_block = 0;
reqbuf.is_auto_stop_trn = 0;
if (!sdmmc_execute_cmd(storage->sdmmc, &cmdbuf, &reqbuf, NULL))
{
sdmmc_stop_transmission(storage->sdmmc, &resp);
return 0;
}
if (!sdmmc_get_rsp(storage->sdmmc, &resp, 4, SDMMC_RSP_TYPE_1))
return 0;
if (!_sdmmc_storage_check_card_status(resp))
return 0;
return _sdmmc_storage_check_status(storage);
}
int sdmmc_storage_init_gc(sdmmc_storage_t *storage, sdmmc_t *sdmmc)
{
memset(storage, 0, sizeof(sdmmc_storage_t));
storage->sdmmc = sdmmc;
if (!sdmmc_init(sdmmc, SDMMC_2, SDMMC_POWER_1_8, SDMMC_BUS_WIDTH_8, SDHCI_TIMING_MMC_HS102, SDMMC_POWER_SAVE_DISABLE))
return 0;
DPRINTF("[gc] after init\n");
usleep(1000 + (10000 + sdmmc->divisor - 1) / sdmmc->divisor);
if (!sdmmc_tuning_execute(storage->sdmmc, SDHCI_TIMING_MMC_HS102, MMC_SEND_TUNING_BLOCK_HS200))
return 0;
DPRINTF("[gc] after tuning\n");
sdmmc_card_clock_powersave(sdmmc, SDMMC_POWER_SAVE_ENABLE);
storage->initialized = 1;
return 1;
}