121 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			C#
		
	
	
	
	
	
			
		
		
	
	
			121 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			C#
		
	
	
	
	
	
using UnityEngine;
 | 
						|
using System.Collections.Generic;
 | 
						|
 | 
						|
public class Triangulator
 | 
						|
{
 | 
						|
    private List<Vector2> m_points = new List<Vector2>();
 | 
						|
 | 
						|
    public Triangulator(Vector2[] points)
 | 
						|
    {
 | 
						|
        m_points = new List<Vector2>(points);
 | 
						|
    }
 | 
						|
 | 
						|
    public int[] Triangulate()
 | 
						|
    {
 | 
						|
        List<int> indices = new List<int>();
 | 
						|
 | 
						|
        int n = m_points.Count;
 | 
						|
        if (n < 3)
 | 
						|
            return indices.ToArray();
 | 
						|
 | 
						|
        int[] V = new int[n];
 | 
						|
        if (Area() > 0)
 | 
						|
        {
 | 
						|
            for (int v = 0; v < n; v++)
 | 
						|
                V[v] = v;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            for (int v = 0; v < n; v++)
 | 
						|
                V[v] = (n - 1) - v;
 | 
						|
        }
 | 
						|
 | 
						|
        int nv = n;
 | 
						|
        int count = 2 * nv;
 | 
						|
        for (int m = 0, v = nv - 1; nv > 2; )
 | 
						|
        {
 | 
						|
            if ((count--) <= 0)
 | 
						|
                return indices.ToArray();
 | 
						|
 | 
						|
            int u = v;
 | 
						|
            if (nv <= u)
 | 
						|
                u = 0;
 | 
						|
            v = u + 1;
 | 
						|
            if (nv <= v)
 | 
						|
                v = 0;
 | 
						|
            int w = v + 1;
 | 
						|
            if (nv <= w)
 | 
						|
                w = 0;
 | 
						|
 | 
						|
            if (Snip(u, v, w, nv, V))
 | 
						|
            {
 | 
						|
                int a, b, c, s, t;
 | 
						|
                a = V[u];
 | 
						|
                b = V[v];
 | 
						|
                c = V[w];
 | 
						|
                indices.Add(a);
 | 
						|
                indices.Add(b);
 | 
						|
                indices.Add(c);
 | 
						|
                m++;
 | 
						|
                for (s = v, t = v + 1; t < nv; s++, t++)
 | 
						|
                    V[s] = V[t];
 | 
						|
                nv--;
 | 
						|
                count = 2 * nv;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        indices.Reverse();
 | 
						|
        return indices.ToArray();
 | 
						|
    }
 | 
						|
 | 
						|
    private float Area()
 | 
						|
    {
 | 
						|
        int n = m_points.Count;
 | 
						|
        float A = 0.0f;
 | 
						|
        for (int p = n - 1, q = 0; q < n; p = q++)
 | 
						|
        {
 | 
						|
            Vector2 pval = m_points[p];
 | 
						|
            Vector2 qval = m_points[q];
 | 
						|
            A += pval.x * qval.y - qval.x * pval.y;
 | 
						|
        }
 | 
						|
        return (A * 0.5f);
 | 
						|
    }
 | 
						|
 | 
						|
    private bool Snip(int u, int v, int w, int n, int[] V)
 | 
						|
    {
 | 
						|
        int p;
 | 
						|
        Vector2 A = m_points[V[u]];
 | 
						|
        Vector2 B = m_points[V[v]];
 | 
						|
        Vector2 C = m_points[V[w]];
 | 
						|
        if (Mathf.Epsilon > (((B.x - A.x) * (C.y - A.y)) - ((B.y - A.y) * (C.x - A.x))))
 | 
						|
            return false;
 | 
						|
        for (p = 0; p < n; p++)
 | 
						|
        {
 | 
						|
            if ((p == u) || (p == v) || (p == w))
 | 
						|
                continue;
 | 
						|
            Vector2 P = m_points[V[p]];
 | 
						|
            if (InsideTriangle(A, B, C, P))
 | 
						|
                return false;
 | 
						|
        }
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    private bool InsideTriangle(Vector2 A, Vector2 B, Vector2 C, Vector2 P)
 | 
						|
    {
 | 
						|
        float ax, ay, bx, by, cx, cy, apx, apy, bpx, bpy, cpx, cpy;
 | 
						|
        float cCROSSap, bCROSScp, aCROSSbp;
 | 
						|
 | 
						|
        ax = C.x - B.x; ay = C.y - B.y;
 | 
						|
        bx = A.x - C.x; by = A.y - C.y;
 | 
						|
        cx = B.x - A.x; cy = B.y - A.y;
 | 
						|
        apx = P.x - A.x; apy = P.y - A.y;
 | 
						|
        bpx = P.x - B.x; bpy = P.y - B.y;
 | 
						|
        cpx = P.x - C.x; cpy = P.y - C.y;
 | 
						|
 | 
						|
        aCROSSbp = ax * bpy - ay * bpx;
 | 
						|
        cCROSSap = cx * apy - cy * apx;
 | 
						|
        bCROSScp = bx * cpy - by * cpx;
 | 
						|
 | 
						|
        return ((aCROSSbp >= 0.0f) && (bCROSScp >= 0.0f) && (cCROSSap >= 0.0f));
 | 
						|
    }
 | 
						|
} |